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ABSTRACT
Job recommender systems are crucial for aligning job opportuni-
ties with job-seekers in online job-seeking. However, users tend to
adjust their job preferences to secure employment opportunities
continually, which limits the performance of job recommendations.
The inherent frequency of preference drift poses a challenge to
promptly and precisely capture user preferences. To address this
issue, we propose a novel session-based framework, BISTRO, to
timely model user preference through fusion learning of semantic
and behavioral information. Specifically, BISTRO is composed of
three stages: 1) coarse-grained semantic clustering, 2) fine-grained
job preference extraction, and 3) personalized top-𝑘 job recommen-
dation. Initially, BISTRO segments the user interaction sequence
into sessions and leverages session-based semantic clustering to
achieve broad identification of person-job matching. Subsequently,
we design a hypergraph wavelet learning method to capture the nu-
anced job preference drift. To mitigate the effect of noise in interac-
tions caused by frequent preference drift, we innovatively propose
an adaptive wavelet filtering technique to remove noisy interaction.
Finally, a recurrent neural network is utilized to analyze session-
based interaction for inferring personalized preferences. Extensive
experiments on three real-world offline recruitment datasets demon-
strate the significant performances of our framework. Significantly,
BISTRO also excels in online experiments, affirming its effective-
ness in live recruitment settings. This dual success underscores the
robustness and adaptability of BISTRO. The source code is available
at https://github.com/Applied-Machine-Learning-Lab/BISTRO.
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1 INTRODUCTION
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(a) A scenario illustrating a user revise the resume to target a different job position
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(b) Statistics on revision of resumes

Figure 1: A toy example in the online recruitment platform.
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In recent years, a clear trend has emerged where online recruit-
ment platforms are undergoing rapid development and surpassing
local job markets as the primary recruitment channel. According
to the market research report [16], the global online recruitment
market size, which was valued at USD 29.29 billion in 2021, is pro-
jected to expand to USD 58.16 billion by 2030, with a compound
annual growth rate of 7.1% from 2023 to 2030. Consequently, the
job recommender system, a primary method in online recruitment,
has also underscored its significance.

However, unlike conventional recommendation settings, recruit-
ment is inherently a bidirectional selection process [27, 45]. This
dynamic necessitates that not only should the jobs align with the
expectations of the job-seekers, but the job-seekers must also satisfy
the requirements set by the employers. As a toy example illustrated
in Figure 1(a), active users refine job preferences in order to secure
employment opportunities, reflected in the user-job interactions
and the resume revision. Initially, the individual seeks employment
as a data engineer but encounters setbacks due to the shortage of
data pipeline and architecture design capabilities. This experience
led to the realization that his skills may be more aligned with data
analyst positions, which shows the preference drift. Motivated by
this insight, the job-seeker refines his resume to better match data
analyst positions, culminating in the successful acquisition of an
offer. Furthermore, Figure 1(b) provides some statistical insights
about resume update behaviors collected from a prominent online
recruitment platform in China over a six-month period to imply
the prevalence of this phenomenon. It highlights that, on average,
job-seekers tend to revise their resumes every 7.28 days when they
do not secure employment and those who update their resumes
frequently are at least 44% more successful in receiving job offers
than the rest of those who are not proactive, underscoring the effec-
tiveness of consistently optimizing resumes during the job-seeking
process. Another interesting insight is over three-quarters of indi-
viduals would change their job-seeking objectives when refining
their resumes, indicating a strong correlation between preference
drift and resume refinement.

The inherent propensity for frequent preference drift implies
the necessity of nuanced and timely modeling of user preference
in job recommendation, which limits the effectiveness of both con-
tent and behavior-based recommendation algorithms. On the one
hand, content-based job recommender systems [26, 56, 57] strive to
precisely profile job-seeker capabilities for better aligning their qual-
ifications with recommendation results. However, they fall short in
capturing job-seeker nuanced job preferences. On the other hand, al-
though behavior-based recommendation, especially session-aware
recommendation [33, 35, 61], provides a solution to timely track job-
seeker preferences by short-term interactions, their performance
is limited by the length of session-based interactions and thus is
vulnerable to noise, which is common in practical job recommender
systems.

To address the above issues, we propose a novel session-based
framework in this paper, namely BISTRO (BehavIoral-SemanTic
fusion for job RecOmmendation). Specifically, the framework con-
tains three modules: 1) A coarse-grained semantic clustering mod-
ule. It groups users or jobs based on semantics to facilitate the
broad identification of person-job matching. 2) A fine-grained job

preference extraction module. In this module, a multi-granular in-
teraction hypergraph is constructed for capturing preference drift
and a novel spectral hypergraph wavelet learning method is per-
formed on this graph to capture preference drift and denoising
preference feature. 3) A personalized top-𝑘 job recommendation
module. It utilizes a recurrent neural network to analyze short-term
sequential behavior and infer personalized preferences, thereby
generating recommendations for the top-𝑘 jobs. In summary, our
contributions are demonstrated as follows:

• To capture the job preference drift in job-seeking, we innovatively
propose a session-based recommendation framework, BISTRO,
which leverages behavioral-semantic fusion learning for job rec-
ommendation.

• To mitigate the effect of noise in user interactions, we develop
a novel graph wavelet kernel-based hypergraph convolutional
neural network, which utilizes spectral graph theory to filter
noisy data adaptively.

• Extensive experiments on three real-world recruitment datasets
and a half-week online algorithm deployment on an online re-
cruitment platform demonstrate the effectiveness and efficiency
of the framework BISTRO.

The remainder of this paper is organized as follows: In Section
3, a crucial definition and the problem statement are discussed. In
Section 4, the proposed framework is introduced. Section 5 pro-
vides the performance evaluation. Section 2 discusses the related
literature, and Section 6 concludes the paper.

2 RELATEDWORK
2.1 Job Recommender System
In job recommender systems, various studies have been proposed
to match job seekers with recruiters. As highlighted by [13, 23,
24, 30, 37, 38, 49, 52, 62, 63, 65], while traditional recommender
systems are adept at predicting job seekers’ preferences, a key to
augmenting the system’s overall effectiveness lies in addressing
the issue of preference drift. Conventionally, this challenge has
been approached through feature engineering in a certain degree,
utilizing content data to capture evolving preferences [12, 21, 66].
Efforts have also been made [15, 19, 29] to integrate clustering
into recommender systems, tackling this problem at the model
level by grouping similar users or jobs based on minimal user/job
contents. Although the user and job representations could be en-
hanced by these refined features, they heavily rely on the results
of semantic analysis of fixed content. To overcome these limita-
tions, we introduce a behavioral-semantic fusion framework that
merges content-driven and interaction-based methodologies, offer-
ing a more comprehensive and adaptive solution to the challenge
of preference drift.

2.2 Recommendation with Graphs
Graph neural networks are increasingly utilized to capture the com-
plexity of entities and their intricate interrelations. Recent research
has leveraged the graph-structured information propagation para-
digm to enhance user and item embeddings, employing a variety of
neighborhood aggregation techniques [14, 18, 44, 60]. For instance,
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LightGCN [10] stands out as a leading graph learning-based rec-
ommendation model, celebrated for its streamlined architecture.
Drawing inspiration from SGC [50], it simplifies the traditional
graph convolutional neural networks by omitting transformation
matrices and non-linear activation functions, focusing instead on
the essential elements of graph convolution. There are also some
studies combining hypergraph learning with recommender systems,
including [4, 22, 47, 54], which use hypergraph to model the short-
term user preference for next-item recommendations. Nonetheless,
challenges such as sparsity and noise within the graph can signifi-
cantly hinder effective information transfer among nodes, poten-
tially confusing the model by prioritizing irrelevant job preferences
[8, 58]. To counteract these issues, our framework incorporates a
wavelet denoising filter, specifically designed to cleanse the data
and ensure the accurate extraction of meaningful job preferences,
thereby enhancing the overall recommendation process.

3 PRELIMINARIES
In this paper, we adopt the BISTRO framework to solve user prefer-
ence drift during the job-seeking process in top-𝑘 job recommen-
dations for users. Specifically, as shown in the above statistics, we
believe a user𝑢 ∈ U would continue to refine her/his resume along
with her/his job preference drift. Thus, we first segment the user
interaction sequence based on the timestamps of resume refine-
ment under the assumption that the job preferences of users remain
relatively stable within a given session.

Definition 1. Job Preference Drift. It refers to the phenomenon
in which users change their job preferences, which could be predomi-
nantly observed through whether the user modifies the resume rather
than modeling the short-term job-seeking behaviors where user inter-
ests tend to remain stable.

Definition 2. Interaction Noise. It stands for job-seeking be-
haviors that are inconsistent with user preferences, i.e., accidental
clicks while a user browses jobs.

Definition 3. Session-based User-Job Interactions. For every
user 𝑢, we need to segment the sequence of the job interactions into
multiple sessions S𝑢 =

{
𝑠𝑢1 , 𝑠

𝑢
2 , · · ·

}
based on whether the resume

of the user has been changed, in order to obtain more accurate job
preference in a specific period.

Based on the definition above, we formulate the problem of the
session-based job recommendation as follows:

Problem 1. Given the historical user resumes𝑫𝑢𝑡 , job requirements
𝑫𝑣𝑡 and interaction sessions S𝑢 , the objective of the job recommender
system is to identify and rank a list of the top-𝑘 job vacancies that
would likely appeal to a user 𝑢 during a session 𝑠𝑢 .

4 METHODOLOGY
In this section, we detail the architecture of the proposed frame-
work, BISTRO, illustrated in Figure 2. The framework comprises
three primary modules: 1) a coarse-grained semantic clustering
module, 2) a fine-grained job preference extraction module, and 3)
a personalized top-𝑘 recommendation module.

Initially, the coarse-grained semantic clustering module incor-
porates a feature clustering approach with a probabilistic latent

semantic analysis method, which facilitates the identification of
broad user or job categories. The probabilistic latent semantic analy-
sis method could efficiently summarize topics of the resume content
and job requirements, and those topics could guide clustering direc-
tions. Subsequent to this, the fine-grained job preference extraction
module constructs a multi-granular interaction hypergraph to deal
with the data drift issue and then designs an adaptive wavelet
learning algorithm for noise-robust preference extraction. In the
hypergraph, we define two types of hyperedges, reflecting the
intra-session and inter-session relationships, to introduce more in-
formation to the graph. Moreover, the wavelet filter in hypergraph
wavelet learning is designed to detect noise in the spectral domain
and further adaptively mitigate the effects of data noise. The final
stage combines a recurrent neural network to discern personalized
job preferences from short-term sequential interactions to generate
top-𝑘 job recommendation results.

4.1 Coarse-grained Semantic Clustering
The coarse-grained semantic clustering serves as the foundational
component of our framework, setting the stage for nuanced pref-
erence feature extraction. By tackling the challenge of aligning
diverse and dynamic job preferences with suitable opportunities,
this module highlights the core motivation behind the intricate
process of facilitating effective employment matching. It utilizes
semantic insights from resumes and job descriptions to broadly
match job seekers with appropriate vacancies, identifying poten-
tial fits based on semantic themes related to job preference and
recruitment requirements.

In our model, the conditional probability between the document
content 𝑑 ∈ 𝑫 and words𝑤 ∈ 𝑑 is captured through a latent embed-
ding 𝑧 (𝑧 = Linear(𝑤) or Linear(𝑑)), representing a class or topic.
The model parameters, 𝑷 (𝑤 |𝑧) and 𝑷 (𝑧 |𝑑), allow for the possibil-
ity that words may associate with multiple classes and documents
that may cover various topics. We assume that the distribution
of words given a class, 𝑷 (𝑤 |𝑧) is conditionally independent of the
document, implying 𝑷 (𝑤 |𝑧, 𝑑) = 𝑷 (𝑤 |𝑧). Thus, the joint probability
of a document 𝑑 and a word𝑤 is represented as:

𝑷 (𝑤,𝑑) = 𝑷 (𝑑)
∑︁
𝑧

𝑷 (𝑤 |𝑧)𝑷 (𝑧 |𝑑). (1)

To estimate the parameters 𝑷 (𝑤 |𝑧) and 𝑷 (𝑧 |𝑑), the Expectation-
Maximization (EM) algorithm iterativelymaximizes the log-likelihood
function 𝑳 over a training corpus 𝑫 :

𝑳 =
∑︁
𝑑∈𝑫

∑︁
𝑤∈𝑑

𝑓 (𝑑,𝑤) log 𝑷 (𝑑,𝑤), (2)

where 𝑓 (𝑑,𝑤) is the frequency of word𝑤 in document 𝑑 . The EM
process alternates between 1) the E-step, estimating the probability
𝑷 (𝑧 |𝑤,𝑑) as:

𝑷 (𝑧 |𝑤,𝑑) = 𝑷 (𝑤 |𝑧)𝑷 (𝑧 |𝑑)∑
𝑧′ 𝑷 (𝑤 |𝑧′)𝑷 (𝑧′ |𝑑) , (3)

and 2) the M-step, recalculating 𝑷 (𝑤 |𝑧) and 𝑷 (𝑧 |𝑑) to maximize 𝑳:

𝑷 (𝑤 |𝑧) =
∑
𝑑 𝑓 (𝑑,𝑤)𝑷 (𝑧 |𝑤,𝑑)∑

𝑤′
∑
𝑑 𝑓 (𝑑,𝑤 ′)𝑷 (𝑧 |𝑤 ′, 𝑑) , (4)

 

1006



KDD ’24, August 25–29, 2024, Barcelona, Spain Xiao Han et al.

Figure 2: The framework overview of BISTRO. The framework is divided into three parts: coarse-grained semantic clustering,
fine-grained job preference extraction, and personalized top-𝑘 job recommendation.

𝑷 (𝑧 |𝑑) =
∑
𝑤 𝑓 (𝑑,𝑤)𝑷 (𝑧 |𝑤,𝑑)∑

𝑧′
∑
𝑤 𝑓 (𝑑,𝑤)𝑷 (𝑧′ |𝑤,𝑑) . (5)

Following training, the "folding-in" process applies the estimated
𝑷 (𝑤 |𝑧) to test documents 𝑑′ ∈ 𝑫 , recalculating 𝑷 (𝑧 |𝑑′) while keep-
ing 𝑷 (𝑤 |𝑧) constant. Typically, only a few iterations of the EM
algorithm are required for this process.

After semantic analysis, we combine the normalized document
and word latent embeddings {𝑧1, 𝑧2, · · · } with other normalized
attributes 𝑎𝑡𝑡𝑟 such as age to achieve clustering by K-Means algo-
rithm for the whole data 𝑪 := 𝑪U or 𝑪V due to the fact of its high
efficiency, as shown in Equation (6).

argmin
𝑪

𝐾∑︁
𝑖

∑︁
𝑥∈𝐶𝑖

| |𝑥 − 𝜇𝑖 | |22, (6)

where 𝜇𝑖 is the mean of all data in 𝐶𝑖 , 𝑥 = concat(𝑧1, 𝑧2, · · · , 𝑎𝑡𝑡𝑟 ),
𝐾 is the number of clusters.

4.2 Fine-grained Job Preference Extraction
Short-term interactions at a session level always encompass issues
of user preference drift and noisy interactions, with each influencing
the other. To tackle the dual challenges above, the fine-grained job
preference extraction module utilizes a novel adaptive hypergraph
wavelet learning method in a unified approach.

Initially, employing a standard graph structure to map user-job
interactions often results in a proliferation of isolated vertices and
edges, adversely impacting the efficacy of graph learning-based job
preference extraction. In response, this paper introduces a hyper-
graph structure, denoted as G𝐶𝑢 = (V𝐶𝑢 , E𝐶𝑢 ), which utilizes two
specialized types of hyperedges to enhance the data with additional
insights. The hypergraph for each user group𝐶𝑢 encompasses 𝑛 job
group nodes, alongside corresponding features (graph signals) 𝑿𝐶𝑢

𝑡 .
The hyperedge, defined as 𝑒 = link(𝑣𝑎, 𝑣𝑏 , · · · ) ∈ E𝑢 , constitutes

a subset of the vertex set V , capturing complex, high-order rela-
tionships within the graph. For illustration, consider two sessions:
𝑠
𝐶𝑢

1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝑠𝐶𝑢

2 = {𝑣5, 𝑣2, 𝑣6, 𝑣7, 𝑣2, 𝑣8}. The introduction
of two distinct hyperedge types significantly augments the data
connectivity within the user-job graph, as depicted in Figure 3.
SessionHyperedges E𝐶𝑢

𝑠 . The intra-session relationship is demon-
strated as one of the critical factors to session-based recommenda-
tion [11]. For each user group, we link all jobs in each session to
enhance the connectivity of these jobs. As for the job 𝑣2 in Figure
3(a), we connect the session jobs {𝑣1, 𝑣3, 𝑣4} and {𝑣5, 𝑣6, 𝑣7, 𝑣8} that
include it with a hyperedge, respectively. It reveals the high-order
correlation of jobs facilitating the interaction on 𝑣2.

4

3

2

1

8

7

6

5

(a) Session hyperedges: The pink and
grey areas are two hyperedges.

1

2

3

4

5 6

7

8

(b) The transition hyperedge: The grey
area is the hyperedge for node 2.

Figure 3: Two types of hyperedges.

Transition Hyperedges E𝑣 . Since the first type of hyperedges
cannot model the chronological order of user-job interactions, we
utilize job transition hyperedges to address this issue. For example,
we connect the outcoming jobs {𝑣3, 𝑣6, 𝑣8} for job 𝑣2 as a hyperedge
in Figure 3(b), which also implies the inter-session relationship
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in those two sessions . These hyperedges also tackle the issue of
preference drift among sessions.

To sufficiently filter the noise while capturing the job preferences,
we design a spectral-based hypergraph wavelet convolutional neu-
ral network with a graph filter in the spectral domain for graph
convolutional operation.

The graph convolution of the general graph signal 𝒙 with a filter
𝒈 ∈ R𝑛 is defined as:

𝒙 ∗𝐺 𝒈 = F −1 (F (𝒙) ⊙ F (𝒈))

= 𝑼
(
𝑼T𝒙 ⊙ 𝑼T𝒈

)
,

(7)

where ∗𝐺 stands for the convolution operator, ⊙ denotes the element-
wise product. If we denote a filter as 𝒈𝜃 = diag

(
𝑼T𝒈

)
, then the

spectral graph convolution can be simplified as:

𝒙 ∗𝐺 𝒈𝜃 = 𝑼𝒈𝜃𝑼
T𝒙 . (8)

Almost all spectral-based graph convolutional neural networks
follow the definition above, and the key difference lies in the choice
of the filter. For example, Bruna et al. [3] take a filter 𝒈𝜃 = Θ

(𝑘 )
𝑖, 𝑗

to
be a set of learnable parameters and consider graph signals having
multiple channels. They define the graph convolutional layer as:

𝑿 (𝑘 )
:, 𝑗 = 𝜎

©«
𝑑𝑘−1∑︁
𝑖=1

𝑼Θ(𝑘 )
𝑖, 𝑗

𝑼T𝑿 (𝑘−1)
:,𝑖

ª®¬ , 𝑗 = 1, 2, · · · , 𝑑𝑘 , (9)

where 𝑘 is the layer index, 𝑿 (𝑘−1) ∈ R𝑛×𝑑𝑘−1 is the input graph
signal, 𝑿 (0)

:,𝑖 = 𝒙 ∈ R𝑛×1, 𝑑𝑘−1 is the number of input channels

and 𝑑𝑘 is the number of output channels, Θ(𝑘 )
𝑖, 𝑗

is a diagonal matrix
filled with learnable parameters.

From Equation (9), the Laplacian eigenvectors of the hypergraph
need to be precomputed to realize the mapping of hypergraph
features between the vertex and spectral domains. Note that the
Laplacian matrix of a hypergraph is defined as follows: L := 𝑫𝑣 −
𝑨 = 𝑫𝑣 − 𝑯𝑾𝑫−1

𝑒 𝑯⊤, where 𝑨 is the adjacency matrix of the
hypergraph, 𝑯 is the node-edge relationship matrix, 𝑫𝑣 and 𝑫𝑒
are degree matrix of nodes and hyperedges separately. Then, the
eigenvectors can be obtained by eigendecomposition methods, as
shown in Equation (10).

𝑫𝑣 − 𝑯𝑾𝑫−1
𝑒 𝑯⊤ = 𝑼Λ𝑼⊤, (10)

where Λ is a diagonal matrix of Laplacian eigenvalues.
In addition, the filter 𝒈𝜃 utilized in Equation (9) is usually a

set of learnable hyperparameters but has problems such as con-
vergence difficulty. Therefore, we utilize the wavelet kernel to
finely define a series of filters that filter in-session noise adap-
tively for different user groups. Similar to the hypergraph Fourier
transform, the hypergraph wavelet transform projects the hyper-
graph signal from the vertex domain into the spectral domain.
Graph wavelet transform employs a set of wavelets as bases, de-
fined as𝜓𝜅 = concat(𝜓𝜅1 ,𝜓

𝜅
2 , · · · ,𝜓

𝜅
𝑛 ) ∈ R𝑛×𝑛 , where each wavelet

𝜓𝜅
𝑖
∈ R1×𝑛 corresponds to a signal on graph diffused away from

node 𝑖 and 𝜅 is a scaling parameter, which is adapted to spectrum
bounds. Mathematically,𝜓𝜅 and𝜓−1

𝜅 can be written as

𝜓𝜅 = 𝑼𝑮𝜿 (𝚲)𝑼T, 𝜓−1
𝜅 = 𝑼𝑮𝜿 (𝚲′)𝑼T, (11)

where𝐺𝜅 (𝚲) = diag[𝑔(𝜅𝜆1), · · · , 𝑔(𝜅𝜆𝑛 )] and𝐺𝜅 (𝚲
′) = diag[𝑔−1 (𝜅𝜆1 )

, · · · , 𝑔−1 (𝜅𝜆𝑛 )] are scaling matrix.
To reduce the computational overhead incurred by the inverse

operation, we choose the heat kernel 𝑔(𝑥) := 𝑒−𝑥 as the wavelet
mother kernel in this paper, and then 𝑔−1 (𝑥) = 𝑒−(−𝑥 ) = 𝑔(−𝑥).

However, eigen-decomposition is known to have extremely high
computational overhead. In order to avoid the computational cost
caused by solving the eigen-decomposition of the Laplacian matrix,
we use Chebyshev polynomials to approximate the convolutional
operator 𝒙 ∗𝐺 𝒈𝜃 ≈ ∑𝑝

𝑖=1 𝑐𝑖𝑇𝑖
(
�̃�

)
, where �̃� = 2

𝑔max
𝚲 − 𝑰𝑛 and

𝝉 = [𝜏1, · · · , 𝜏𝑝 ] is a vector of Chebyshev coefficients. Note that
𝑇𝑖 (𝜓𝜅 ) = 𝑼𝑇𝑖 (�̃�)𝑼T,𝜓𝑠 = 2

𝑔max
𝜓𝑠 − 𝑰𝑛 , we have:

𝜓𝜅 ≈ 𝑃𝑝 (𝜓𝜅 ) =
𝑝∑︁
𝑖=1

𝜏𝑖𝑇𝑖 (𝜓𝜅 ). (12)

Similarly,

𝜓−1
𝜅 ≈ 𝑃𝑝 (𝜓−1

𝜅 ) =
𝑝∑︁
𝑖=0

𝜏 ′𝑖𝑇𝑖 (𝜓
−1
𝜅 ), (13)

where 𝜓−1
𝜅 = 2

(𝑔−1 )max
𝜓−1
𝜅 − 𝑰𝑛 and 𝜏 ′

𝑖
is a vector of Chebyshev

coefficients.
Therefore, the 𝑙-th hypergraph wavelet convolutional network

for job preference feature extraction can be derived as follows:

𝑿𝑙+1:, 𝑗 = 𝜎
©«
𝑑𝑙∑︁
𝑖=1

𝑤𝑖, 𝑗 |V|−1
|V |∑︁
𝜅=1

𝑃𝑝 (𝜓𝜅 ) (L̃)𝒈𝑙
𝜅,𝜃 ( 𝑗,𝑖 )

𝑃𝑝 (𝜓−1
𝜅 ) (L̃)𝑿𝑙:,𝑖

ª®¬ .
(14)

Generally, many studies assume the Chebyshev coefficients {𝜏1,
𝜏2, · · · } in Equation (12) and (13) to be a set of random variables that
can be trained by a Multi-Layer Perceptron (MLP). In this paper, we
use Boyd’s theory [2] to calculate those coefficients directly. From
Boyd’s theory, the Chebyshev coefficients can be expressed by:

𝜏 𝑗 =
2

𝑛 + 1

𝑛∑︁
𝜅=0

𝑓 (𝑦𝜅 )𝑇𝑗 (𝑦𝜅 ) , (15)

where 𝑦𝜅 := 𝑐𝑜𝑠
(
(2𝜅+1)𝜋
2𝑛+2

)
, 𝜅 ∈ [𝑛] is the interpolant of degree 𝑛

in the Chebyshev points of the first kind, and 𝑓 (·) is the Chebyshev
series for the function 𝑓 that absolutely continuous on [−1, 1],
which is defined as [40, 43]:

𝑓 (𝑥) =
∞∑︁
𝑗=0

𝑏 𝑗𝑇𝑗 (𝑥), 𝑏 𝑗 =
2
𝜋

∫ 1

−1

𝑓 (𝑥)𝑇𝑗 (𝑥)√
1 − 𝑥2

𝑑𝑥, (16)

where the prime denotes a sum whose first term is halved and
𝑇𝑗 (𝑥) = cos

(
𝑗 cos−1 𝑥

)
is the Chebyshev polynomial of degree 𝑗 .

The Chebyshev coefficient 𝜏 𝑗 in Equation (15) can be computed
by Fast Fourier Transform (FFT), which significantly improves com-
putational efficiency compared to eigen-decomposition methods.

4.3 Personalized Top-𝑘 Job Recommendation
Adapting job recommendations to reflect the job preference of the
current user is the final key challenge faced by job recommen-
dation systems, which could directly affect the recommendation

 

1008



KDD ’24, August 25–29, 2024, Barcelona, Spain Xiao Han et al.

performance. To address this difficulty, BISTRO employs a recur-
rent neural network to align recommendations with previously
extracted job preferences precisely. This approach underscores our
dedication to providing timely and relevant job matches, ensuring
high accuracy in meeting user needs.

To refine the analysis of a user’s personalized features, we con-
sider the last𝑇 jobs with which a user has recently interacted, along
with their embeddings 𝑬𝒎𝒃

job
𝑡 , 𝑡 ∈ [𝑇 ]. A recurrent neural network

is employed to generate the personalized feature 𝒀 𝑡 :

𝒀 𝑡 = 𝜎 (𝑾𝑎 · 𝑶𝑡 ),

𝑶𝑡 = 𝜎 (𝑾𝑏 · 𝑬𝒎𝒃
job
𝑡 +𝑾𝑐 · 𝑶𝑡−1),

(17)

where 𝑶0 = 0, 𝜎 is the activation function, 𝑾𝑎 , 𝑾𝑏 and 𝑾𝑐 are
learnable parameters.

Then, this personalized feature enhances the job preference 𝑿𝐿
calculated by Equation (14) for a specific user of a certain feature
by the following weighted formula:

𝒀 = Sigmod
(
Linear

(
concat(𝒀𝑇 ,𝑿𝐿)

))
. (18)

BISTRO gives the top-𝑘 job recommendation by minimizing the
loss function below:

𝐿𝑜𝑠𝑠 =
1
𝑘

𝑘∑︁
𝑖=1

𝑀∑︁
𝑞=1

𝜒𝑖𝑞 log(𝑦𝑖𝑞), (19)

where 𝜒𝑖𝑞 ∈ [0, 1] is the ground truth, 𝑦𝑖𝑞 is the value on 𝑖-th
row and 𝑞-th column in 𝒀 , standing for the probability that the
𝑖-th predicted job belongs to job label 𝑞, 𝑀 is the number of job
positions.

5 EXPERIMENTS
In this section, we first describe the datasets used in this paper. Then,
we introduce the experimental settings and compare BISTRO with
representative baselines. We further present some case studies on
job recommendations (Appendix C.3). The experiments are mainly
designed to answer the research questions as follows:
• RQ1: Can our BISTRO recommend suitable jobs for users?
• RQ2: Does the clustering module effectively accommodate new
jobs or users who have just revised their resumes?
• RQ3: How does the specially designed hypergraph wavelet learn-
ing method deal with preference drift and noise issues?
•RQ4: How do different settings influence the model performance?

5.1 Dataset
The datasets come from the real-world online recruitment markets
of multiple cities (Shenzhen, Shanghai, and Beijing). We utilize
the user-job interaction (browse, click, chat, and so on) logs, user
resumes, and job requirements data on this platform from July 1,
2023 to January 31, 2024 (215 days in total). To protect the privacy
of users and platform operators, all sensitive information related to
users is hashed or removed, and we only keep those data in the in-
formation technology industry. The detailed statistical information
of our datasets is summarized in Table 1.

Table 1: Statistics of the datasets.

Users Interactions Jobs
Shenzhen 9,586 9,504,285 1,804,402
Shanghai 10,233 8,894,726 1,707,248
Beijing 15,915 13,467,252 2,012,972

5.2 Experimental Settings
Baselines We compare BISTRO with baselines from different
types of recommendation methods, including conventional meth-
ods: BasicMF [20], ItemKNN [46], PureSVD [7], and SLIM [34],
DAE [53], MultVAE [25], EASE [41]; Graph neural networks-based
methods: SLRec [59] and SGL [51], P3a [6], RP3b [36], NGCF [48],
LightGCN [10], GCCF [5], NCL [28], DirectAU [44], HG-GNN [35],
A-PGNN [61], AdaGCL [18], and MvDGAE [64]; Sequential recom-
mendation methods: STAMP [31], GRU4Rec [11], BERT4Rec [42],
CL4Rec [55], CoScRec [32], and TiCoSeRec [9]. More details about
these baselines are shown in Appendix C.1. For ablation studies, we
compare the variants of BISTRO to verify the effectiveness of each
component.
Evaluation metrics In this paper, two metrics commonly used
in recommendation algorithms are used as evaluation metrics: hit
ratio and mean reciprocal rank, and the definitions of these metrics
are demonstrated as follows:
• Hit Ratio (HR): It measures the proportion of successful recom-
mended jobs out of all the recommendations made. Later, we use
H@𝑘 to denote the value of HR when the model makes top-𝑘
recommendations.

• Mean Reciprocal Rank (MRR): It is a statistical measure that
focuses explicitly on the rank of the first relevant item in the list of
recommendations to show the effectiveness of a recommendation
method, and in this paper we use the symbol M@𝑘 to present
this metric for simplicity.

Implementation Details We experiment with a Spark cluster
for preprocessing the data and A800 GPU servers to train and infer
the proposed model. It has three parts: coarse-grained semantic
clustering, fine-grained job preference extraction, and personalized
top-𝑘 job recommendation. 1) Coarse-grained semantic clustering:
we set the ratio of the number of groups to the number of users to
about 1:1000 and the ratio of the number of groups to the number
of job numbers to about 1:500. User professional skills and their
inherent characteristics, such as work experience, are used as user
clustering characteristics. Similarly, we extract job requirements
as clustering features for jobs. 2) Fine-grained job preference ex-
traction: the sparse matrix is used to represent the structure of
hypergraphs efficiently. In addition, the order of Chebyshev ap-
proximation is 𝑝 = 3, the total degree of interpolants is 𝑛 = 50,
and the number of hypergraph convolutional layers is 𝐿 = 1. We
set the number of hidden dimensions of this network to 𝑑𝑙 = 128.
4) Personalized top-𝑘 job recommendation: the number of hidden
dimensions of the recurrent neural network is set to be the same
as the one in hypergraph convolutional layers: 𝑑rnn = 128. We set
𝑘 = 10 for baseline experiments, and more experimental results
under different settings of 𝑘 can be found in Appendix C.2. As for
each dataset, we split the training and validation data at a ratio
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of 4:1, and we randomly sample 20% data of the whole dataset for
testing. In addition, Adam is used as the optimizer for all models,
and we use the default parameter for it, i.e., 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 10−8, 𝑙𝑟 = 10−3.

5.3 Overall Performance (RQ1)
The performance of all the baselines in three datasets is shown in
Table 2, in terms of the two metrics, i.e., H@10 and M@10. The
performance of all methods is the average of the last 100 epochs in
a total of 1000 epochs. It can be observed:

Table 2: Experimental results of different baselines.

Shenzhen Shanghai Beijing
H@10 M@10 H@10 M@10 H@10 M@10

BasicMF 0.2791 0.2837 0.3528 0.2773 0.3181 0.3004
ItemKNN 0.2479 0.2969 0.3278 0.2793 0.3224 0.2931

PureSVD 0.4422 0.4205 0.4658 0.4391 0.4666 0.3827
SLIM 0.045 0.0443 0.0463 0.047 0.0539 0.04
DAE 0.1867 0.2024 0.1988 0.2125 0.2013 0.2024

MultVAE 0.4249 0.4149 0.4516 0.3499 0.5229 0.348
EASE 0.2891 0.3192 0.2683 0.2989 0.29 0.2818
SLRec 0.2767 0.3796 0.3636 0.2958 0.3968 0.3526
SGL 0.4089 0.3618 0.4375 0.397 0.4128 0.3618
P3a 0.3185 0.3748 0.3177 0.3355 0.3728 0.3489
RP3b 0.2917 0.3017 0.3362 0.2929 0.3304 0.2919
NGCF 0.3557 0.2859 0.398 0.2924 0.3851 0.2807

LightGCN 0.3785 0.3647 0.4423 0.3453 0.4232 0.3911
GCCF 0.3756 0.346 0.3901 0.2993 0.3896 0.3283
NCL 0.3424 0.3917 0.3476 0.3472 0.4111 0.3557

DirectAU 0.3725 0.37 0.4173 0.3759 0.3943 0.3643
HG-GNN 0.3131 0.1936 0.3637 0.2826 0.4204 0.3430
A-PGNN 0.3372 0.2069 0.3876 0.3019 0.4485 0.3657
AdaGCL 0.3867 0.4417 0.4044 0.3814 0.4516 0.3867
MvDGAE 0.5028 0.5258 0.5316 0.4812 0.4677 0.4845
STAMP 0.2754 0.2924 0.3031 0.2756 0.3073 0.2745
GRU4Rec 0.3247 0.3449 0.3576 0.3251 0.3623 0.3237
BERT4Rec 0.3395 0.3607 0.3738 0.3399 0.3787 0.3385
CL4Rec 0.3882 0.4124 0.4276 0.3887 0.4332 0.3871
CoScRec 0.4096 0.4352 0.4512 0.41 0.457 0.4084
TiCoSeRec 0.4397 0.4671 0.4842 0.4402 0.5324 0.4925

Ours 0.5598 0.5467 0.6166 0.5152 0.6247 0.5131
Improves 10.19% 3.82% 13.78% 6.61% 14.7% 4.01%

Bold indicates the statistically significant improvements
(i.e., two-sided t-test with p < 0.05) over the best baseline (underlined).

For all metrics: the higher, the better.

• We can see that most conventional methods have poor perfor-
mance, i.e., BasicMF, ItemKNN, SLIM, DAE, and EASE. SLIM de-
ploys only a linear function to model user-job interactions, which
limits the ability to generalize the model. BasicMF, ItemKNN,
DAE, and EASE cannot provide fine-grainedmodeling for user/job
features. PureSVD and MultVAE offer significant enhancements
in performance over other techniques, yet they require extensive
computational resources. Despite their advantages, they fall short
of accurately capturing the dynamics of drifted interactions.

Table 3: Results of online experiments.

Day 1 Day 2 Day 3 Day 4
C S C S C S C S

MvDGAE 0.67 0.46 0.79 0.49 0.76 0.53 0.69 0.47
TiCoSeRec 0.45 0.23 0.66 0.41 0.73 0.72 0.70 0.78
CoScRec 0.42 0.30 0.43 0.28 0.46 0.32 0.55 0.46
BISTRO 0.82 0.71 1.00 0.96 0.98 1.00 0.97 0.95

“C” indicates the rate of having a chat about the recommended jobs,
“S” stands for the rate of onboarding to the recommended jobs.

* Please note that all results have been normalized to
safeguard the company’s trade secrets.
For all metrics: the higher, the better.

• Compared to GNN-based methods, BISTRO allows for the ex-
traction of fine-grained user representations from user resumes
and their use in preference analysis. Among these baselines,
MvDGAE achieves the best performance. This is because it also
uses noise reduction representation learning based on multiview
graphs. However, it lacks content modeling of user resumes and
job requirements, resulting in lower results than our framework.

• Sequential models can effectively learn the relationship among
user-job interactions over time, but such interactions can easily
be negatively impacted by spontaneous user preference drift,
which would be directly reflected in interaction records. Thus, the
sequence-only models do not apply to the job recommendation
scenario, and their performance is justifiably worse than that of
our framework.
Furthermore, we extended our evaluation by deploying our

model from the offline experiments to an online recruitment plat-
form for a half-week online experiment, as shown in Table 3. In
online experiments, the performance is measured on a daily basis,
and we randomly select a unique 1% of active users and push the
results for each model directly at the re-rank stage. It demonstrates
our proposed method’s superior performance and exceptional ro-
bustness compared to other baseline models.

5.4 Ablation Study (RQ2, RQ3)
The influence of clustering As mentioned previously, the
clustering module can effectively achieve semantic matching at
a coarse-grained level. Therefore, we partition the dataset into
four subsets that do not overlap each other to train the model to
achieve the following four tasks: 1) existing jobs for existing users,
2) existing jobs for users who have just revised resumes, 3) new
jobs for existing users, and 4) new jobs for users who have just
revised resumes. The comparison results are shown in Table 4.

Table 4: Results under different tasks of the dataset.

Ours Non-clustering
H@10 M@10 H@10 M@10

Task 1 0.7241 0.5947 0.7119 0.6012
Task 2 0.6889 0.5659 0.2215 0.1819
Task 3 0.6557 0.5385 0.2018 0.1658
Task 4 0.6247 0.5131 0.0855 0.0702
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Figure 4: Results of model performance in relation to the
proportion of noise in data.

Compared to the frameworkwithout a clusteringmodule, BISTRO
is better adapted to semantic matching: neither the HR nor the MRR
suffers from a significant drop, which shows the efficiency of the
clustering module.
The effect of hyperedges The construction of hyperedges in
BISTRO can increase the density of the interaction graph, which
could add more structural information to address the preference
drift issue. To verify this idea, we use the following formula to com-
pute the density of an undirected graph: Density =

2 | E |
|V |×( |V |−1) .

As shown in Table 5, the density of the graph is doubled when
we add all types of hyperedges and the experimental results have
also been improved due to the optimization of the structure in the
graph.

Table 5: Results under different graph constructions.

Density H@10 M@10
Without hyperedges 1.177% 0.4109 0.3375

Only session hyperedges 2.811% 0.4904 0.4028
Only transition hyperedges 2.793% 0.4927 0.4046
Both types of hyperedges 3.581% 0.6247 0.5131

The validity of hypergraph wavelet filter In BISTRO, we
design a novel hypergraphwavelet learningmethod. In this learning
method, a wavelet filter is deployed for data denoising as well as
fine-grained job preference feature extraction. As shown in Figure 4,
the curves illustrate the results of threemodels, which have different
filtering settings, under different percentages of noise in the data.
We can also visualize from it that our method, BISTRO, has the
smoothest decrease in model performance as the proportion of
noise in the data increases.

To vividly show the denoising capability of the proposed hy-
pergraph wavelet filter, we randomly select a user who is active
in a week, filter the 50 most recent interactions from three job
categories, and construct an interaction graph. In this graph, each
node represents a job the user has engaged with, interconnected
by grey dotted lines, while the interaction sequence of the user is
depicted with grey edges. On this basis, we introduce noisy jobs
(marked with orange crosses) and their corresponding interactions
(denoted by orange edges and dotted lines) to mimic the effect of a
user accidentally clicking on unrelated job types. Given that each
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Figure 5: Results of denoising performance.

model generates job preference representations for diverse jobs,
we visualize the connections between the user and jobs, as well
as the relationships among jobs themselves, as shown in Figure 5.
We eliminate edges whose cosine similarity between job repre-
sentation pairs fell below a uniform threshold and remove links
between isolated jobs and the user. Consequently, a graph with
more orange lines indicates lower model performance. Notably, as
data noise levels escalated, the comparative models demonstrated
diminished noise filtering effectiveness relative to our proposed
approach. Specifically, the random walk-based method significantly
underperformed compared to the spectral GCN method, primarily
due to the ability of spectral graph neural networks to filter out
irrelevant interaction features. Furthermore, our approach employs
a wavelet kernel to create a set of sub-filters, adeptly denoising
by dynamically selecting appropriate filters for the user’s evolving
characteristics.

5.5 Parametric Study (RQ4)
The size of user (job) groups The size of user and job groups
are two hyperparameters that need to be predefined. Therefore, we
choose 500:1, 1000:1, and 2000:1 as the ratios of the total number
of users and the number of user groups 𝜉𝑢 , and 100:1, 500:1, 1000:1
as the ratios of the total number of jobs and the number of job
groups 𝜉𝑣 for our experiments respectively, as shown in Figure 6(a)
and 6(b). We can easily observe that our model achieves best when
𝜉𝑢 =1000:1 and 𝜉𝑣 =500:1.
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Figure 6: Results of different hyperparameters.
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Figure 7: Results under different session lengths.

The order ofChevbyshev approximation The order of Chevby-
shev approximation greatly impacts the performance of hypergraph
wavelet neural networks. To find the best order, we test our model
with 𝑝 = 1, 2, 3, 4 and 5, and the results are shown in Figure 6(c).
We can see that the performance of the model remains constant
when 𝑝 is greater than or equal to 3. Notice that as 𝑝 increases,
the computational overhead of the model will also increase, so we
choose 𝑝 = 3 as the hyperparameter of our model.
The average length of a session The length of the session is
another hyperparameter that affects the performance of the model.
In Figure 7(a), we can see that the average length of each session
is 19-37 on average, and such short behavioral sequences in job
recommendations (In job recommendations, the average number of
interactions for users to find a suitable job is more than 80 times) are
easily interfered with by noisy interactions. Therefore, we further
compared our proposed framework with the top-2 baselines under
different session length, as illustrated in Figure 7(b). It can be seen
that when the session length is relatively short, noise has a huge
negative impact on the accuracy of all models. However, as the
session length decreases, our framework is more robust than the
other two methods and can better resist noise interference.

6 CONCLUSION
This study introduces BISTRO, an innovative framework designed
to navigate the challenges of job preference drift and the subse-
quent data noise. The framework is structured around three mod-
ules: a coarse-grained semantic clustering module, a fine-grained
job preference extraction module, and a personalized top-𝑘 job rec-
ommendation module. Specifically, a hypergraph is constructed to
deal with the preference drift issue and a novel hypergraph wavelet
learning method is proposed to filter the noise in interactions when
extracting job preferences. The effectiveness and clarity of BISTRO
are validated through experiments conducted with both offline and
online environments. Looking ahead, we aim to continue refining
BISTRO to enhance its applicability in broader contexts, particularly
in scenarios characterized by anomalous data.
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A NOTATIONS
We summarize all notations in this paper and list them in Table 6.

Table 6: Notations in this paper.

Notation Description
S𝑢 The set of session-based interactions
G Interaction graph
V Group-based node-set, V = {𝑣1, 𝑣2, · · · }
E The hyperedge set, E = {𝑒1, 𝑒2, · · · }
U The user set, U = {𝑢1, 𝑢2, · · · }
X Graph features that extracted from user/job contents
𝑫𝑢 The user resume set
𝑫𝑣 The job requirement set

𝑪𝑢&𝑪𝑣 User/Job groups
L Graph Laplacian matrix
𝑯 The node-edge relationship matrix of the hypergraph

𝑫𝑣&𝑫𝑒 The degree matrix of nodes and hyperedges
𝑼 Eigen-vectors of graph Laplacian matrix
𝒈𝜃 Graph filter with training parameter 𝜃
𝜉 The ratio of the users (jobs) to user (job) groups
𝑝 The order of Chebyshev approximation

B MODEL COMPLEXITY
Our proposed framework, BISTRO, is efficient. We will analyze
it from two aspects: theoretical [from 𝑂 (𝑛3) to 𝑂 (𝑛 log𝑛)] and
application (less than 100𝑚𝑠 per sample) level.
Theoretical level

Among all modules in BISTRO, the graph neural network (GNN)
is considered very time-consuming. Actually, graph learning-based
recommender systems have computational limitations in practice.
To address this issue, we cluster users (jobs) based on the semantic
information in their resumes (requirements) using the K-Means
algorithm and use a simple RNN to extract the personalized prefer-
ence for a person in the user group. The extraction of preference
features based on user (job) groups reduces the computational
overhead of GNNs. Noting that eigendecomposition in GNNs is
resource-intensive, we place it by using the Chebyshev polynomial
estimation, and the Chebyshev coefficient in the polynomial can be
computed by Fast Fourier Transform, which reduces the computa-
tional complexity from exponential complexity𝑂 (𝑛3) to𝑂 (𝑛 log𝑛).
Therefore, our algorithm is efficient.
Application level

In practice, the training of all models is performed offline. For
example, we use spark cluster to calculate the clustering center of
each group and use HGNN to learn the corresponding representa-
tion of groups. For new or updated users and jobs, we assign them
to the nearest group based on semantic clustering. Only the RNN
module operates online, inferring personalized user representations
within groups. In the online experiment, the 99% Response Time of
BISTRO is less than 100𝑚𝑠 .

C EXPERIMENT DETAIL
C.1 Baselines Detail
The details of these baselines are as follows:

• BasicMF [20]: A model that combines matrix factorization with a
Multilayer Perceptron (MLP) for recommendations.
• ItemKNN [46]: A recommender that utilizes item-based collabo-
rative filtering.
• PureSVD [7]: An approach that applies Singular Value Decompo-
sition for recommendation tasks.
• SLIM [34]: A recommendationmethod known as the Sparse Linear
Method.
• DAE [53]: Stands for Collaborative Denoising Auto-Encoder, used
in recommendation systems.
•MultVAE [25]: A model extending Variational Autoencoders to
collaborative filtering for implicit feedback.
• EASE [41]: A recommendation technique called Embarrassingly
Shallow Autoencoders for Sparse Data.
• P3a [6]: A method that uses ordering rules from random walks
on a user-item graph.
• RP3b [36]: A recommender that re-ranks items based on 3-hop
random walk transition probabilities.
• NGCF [48]: Employs graph embedding propagation layers to
generate user/item representations.
• LightGCN [10]: Utilizes neighborhood information in the user-
item interaction graph.
• SLRec [59]: A method using contrastive learning among node
features.
• SGL [51]: Enhances LightGCN with self-supervised contrastive
learning.
• GCCF [5]: A multi-layer graph convolutional network for recom-
mendation.
• NCL [28]: Enhances recommendation models with neighborhood-
enriched contrastive learning.
• DirectAU [44]: Focuses on the quality of representation based on
alignment and uniformity.
• HG-GNN [35]: Constructs a heterogeneous graph with both user
nodes and item nodes and uses a graph neural network to learn the
embedding of nodes as a potential representation of users or items.
• A-PGNN [61]: Uses GNN to extract session representations for
intra-session interactions and uses an attention mechanism to learn
features between sessions.
• AdaGCL [18]: Combines a graph generator and a graph denoising
model for contrastive views.
• MvDGAE [64]: Stands for Multi-view Denoising Graph AutoEn-
coders.
• STAMP [31]: A model based on the attention mechanism to model
user behavior sequence data.
• GRU4Rec [11]: Utilizes Gated Recurrent Units for session-based
recommendations.
• BERT4Rec [42]: A model for the sequence-based recommendation
that handles long user behavior sequences.
• CL4Rec [55]: An improved version of BERT4Rec with locality-
sensitive hashing for faster item retrieval.
• CoScRec [32]: It explores an innovative recommendation ap-
proach that enhances sequential recommendation systems through
robust data augmentation and contrastive self-supervised learning
techniques.
• TiCoSeRec [9]: A method based on CoSeRec, utilizing data aug-
mentation algorithms for sequence recommendation improvement.
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Table 7: Results under different settings of 𝑘 .

𝑘 = 5 𝑘 = 10 𝑘 = 20
H@𝑘 0.6059 0.6247 0.6303
M@𝑘 0.5117 0.5131 0.5051

C.2 The number of recommended jobs
The hyperparameter, 𝑘 , also has a critical impact on experimental
results. We set 𝑘 = 5, 10 and 20 to conduct experiments respectively.
The experimental results are shown in Table 7. It can be seen our
model performs well under all settings.

C.3 Case Study

Skill Req: bb+cc
Degree Req: dd
Experience: hh

Location: gg
JID

***872
JID

***994
Skill Req: ee+ff
Degree Req: dd
Experience: hh

Location: gg

JID
***265

UID
***175

UID
***175

JID
***523

UID
***479

Age: aa
Skill: bb, cc
Degree: dd

Age: aa
Skill: ee, ff
Degree: dd

UID
***013

New Jobs

Revise
Resume

Ex
pe
ct Expect

Click Rec.

Cl
ic
k Click

Re
c. Re c.

Figure 8: A real-life scenario for the job recommendation.

Beyond its effectiveness in performance, BISTRO also boasts
considerable interpretability. To demonstrate how the framework
mitigates both the job preference drift and data noise problems,
we present a real-life scenario to illustrate the logic behind the
suggestions made by BISTRO, as shown in Figure 8.

In this figure, jobs with IDs ***872 and ***994 are two job posi-
tions that are newly posted in the online recruitment system, while
IDs ***265 and ***523 are two job positions that a large number of
users interact with frequently. Among them, ***872 and ***265, as
well as ***994 and ***523, have similar occupational demand descrip-
tions respectively. Also, the user with ID ***175 shared a similar

resume with user ID ***479 before ***175 modified the resume, and
after his resume was changed, ***175 had a similar content with
user ***013. Recommendations in this scenario can be divided into
three examples:
Example 1 (Recommendation for a dynamically changing user)
Consider the user represented by ID ***175, BISTRO addresses this
challenge by deploying content-based analysis. The framework
utilizes the user’s social network and a set of resume attributes
collected to create a composite feature profile to identify users with
similar tastes. Subsequently, it recommends a job with ID ***523
favored by a like-minded user with ID ***013 to him.
Example 2 (Recommendation for a new job) A newly posted
job with ID ***872 lacks any user interaction data, complicating the
generation of a meaningful representation for it. BISTRO, however,
overcomes this by incorporating auxiliary information such as skill
requirements and working experience, and then associated tags to
locate similar content. By leveraging this approach combined with
the user’s expectations, BISTRO acquires a rich and informative
embedding for the job, enabling it to recommend the job to users
who have shown an interest in comparable jobs.
Example 3 (Recommend a new job to a dynamically changing user)
Combining both two situations illustrated above, BISTRO deals with
this complex challenge by utilizing a wavelet graph denoising filter
and graph representationmethod. In this way, it can recommend the
latest jobs with similar job content to users with the same real-time
needs as well as similar user content characteristics.

Table 8: Results of different job recommender systems.

Shenzhen Shanghai Beijing
H@10 M@10 H@10 M@10 H@10 M@10

InEXIT 0.4131 0.2936 0.4611 0.3762 0.5141 0.4033
DGMN 0.4274 0.3178 0.4897 0.3992 0.5217 0.4125
APJFMF 0.4352 0.3114 0.4863 0.3910 0.5254 0.4166
Ours 0.5598 0.5467 0.6166 0.5152 0.6247 0.5131

Bold indicates the statistically significant improvements
(i.e., two-sided t-test with p < 0.05) over the best baseline (underlined).

For all metrics: the higher, the better.

In addition, we also compare the proposed framework, BISTRO,
withmultiple job state-of-the-art recommender systems, i.e., InEXIT
[39], DGMN [1], and APJFMF [17]. The result can be found in
Table 8. We can see that our framework acheves the best among all
baselines, which verify the effectiveness of our method.
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